Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(3): 312-318, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36923909

ABSTRACT

Fibroblast growth factor receptors (FGFRs) are transmembrane receptor tyrosine kinases that regulate multiple physiological processes. Aberrant activation of FGFR2 and FGFR3 has been linked to the pathogenesis of many tumor types, including cholangiocarcinoma and bladder cancer. Current therapies targeting the FGFR2/3 pathway exploiting small-molecule kinase inhibitors are associated with adverse events due to undesirable inhibition of FGFR1 and FGFR4. Isoform-specific FGFR2 and FGFR3 inhibitors that spare FGFR1 and FGFR4 could offer a favorable toxicity profile and improved therapeutic window to current treatments. Herein we disclose the discovery of dual FGFR2/FGFR3 inhibitors exploiting scaffold repurposing of a previously reported ALK2 tool compound. Structure-based drug design and structure-activity relationship studies were employed to identify selective and orally bioavailable inhibitors with equipotent activity toward wild-type kinases and a clinically observed gatekeeper mutant.

2.
ACS Med Chem Lett ; 14(1): 5-10, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36655125

ABSTRACT

In spite of the great success of immune checkpoint inhibitors in immune-oncology therapy, an urgent need still exists to identify alternative approaches to broaden the scope of therapeutic coverage. Hematopoietic progenitor kinase 1 (HPK1), also known as MAP4K1, functions as a negative regulator of activation signals generated by the T cell antigen receptor. Herein we report the discovery of novel pyrazolopyridine derivatives as selective inhibitors of HPK1. The structure-activity relationship campaign led to the discovery of compound 16, which has shown promising enzymatic and cellular potency with encouraging kinome selectivity. The outstanding pharmacokinetic profiles of 16 in rats and monkeys supported further evaluations of its efficacy and safety in preclinical models.

3.
ACS Med Chem Lett ; 14(1): 116-122, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36655134

ABSTRACT

Herein we report the discovery of a novel biaryl amide series as selective inhibitors of hematopoietic protein kinase 1 (HPK1). Structure-activity relationship development, aided by molecular modeling, identified indazole 5b as a core for further exploration because of its outstanding enzymatic and cellular potency coupled with encouraging kinome selectivity. Late-stage manipulation of the right-hand aryl and amine moieties surmounted issues of selectivity over TRKA, MAP4K2, and STK4 as well as generating compounds with balanced in vitro ADME profiles and promising pharmacokinetics.

4.
Mol Cancer Ther ; 20(10): 1916-1925, 2021 10.
Article in English | MEDLINE | ID: mdl-34376579

ABSTRACT

This study reports the pharmacologic effects of isatuximab, a CD38 mAb, on T- and B-cell acute lymphoblastic leukemia (ALL). We analyzed CD38 expression in 50-T-ALL and 50 B-ALL clinical samples, and 16 T-ALL and 11 B-ALL cell lines. We primarily focused on in vitro assessments of isatuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In vivo assessment of isatuximab activity was performed in several ALL xenograft models, including disseminated and subcutaneous tumor models in female C.B-17 severe combined immunodeficiency mice. Our study reveals that most patients (90%-100%) carried CD38+ blasts independent of disease burden. The median CD38 receptor density on abnormal lymphoblasts is 41,026 copies/cell on T-ALL and 28,137 copies/cell on B-ALL, respectively. In patients with T-ALL, there is a significant increase of CD38 expression in abnormal blasts compared with normal T cells. High-level CD38 receptor density (RD) is critical to trigger effective isatuximab-mediated ADCC against target ALL cells. In addition, a correlation between CD38 RD and isatuximab-mediated ADCP is demonstrated. In the disseminated CD38+, T-ALL, and B-ALL xenograft models, isatuximab is able to induce robust antitumor activity, even at low doses. This study shows that isatuximab has significant in vitro and in vivo activity against ALL cells with robust ADCC and ADCP effects that are associated with CD38 expression levels in both T-ALL and B-ALL.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 30(23): 127625, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33096160
6.
Front Immunol ; 11: 1771, 2020.
Article in English | MEDLINE | ID: mdl-32922390

ABSTRACT

Isatuximab is a monoclonal antibody targeting the transmembrane receptor and ectoenzyme CD38, a protein highly expressed on hematological malignant cells, including those in multiple myeloma (MM). Upon binding to CD38-expressing MM cells, isatuximab is thought to induce tumor cell killing via fragment crystallizable (Fc)-dependent mechanisms, including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), as well as via direct Fc-independent mechanisms. Here, these mechanisms of action were investigated in MM and diffuse large B-cell lymphoma (DLBCL) cell lines, as well as in peripheral blood mononuclear cells derived from healthy donors, and in MM patient-derived samples. Our findings show that isatuximab-mediated cytotoxicity occurred primarily via ADCC and ADCP in MM cell lines and via ADCC and apoptosis in DLBCL cell lines expressing high levels of CD38. We identified the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway and MM cell-secreted transforming growth factor-beta (TGF-ß) as tumor cell-related features that could suppress CD38-mediated ADCC. Furthermore, we established that isatuximab can directly activate natural killer (NK) cells and promote NK cell-mediated cytotoxicity via crosslinking of CD38 and CD16. Finally, isatuximab-induced CDC was observed in cell lines with high CD38 receptor density (>250,000 molecules/cell) and limited expression of inhibitory complement regulatory proteins (CD46, CD55, and CD59; <50,000 molecules/cell). Taken together, our findings highlight mechanistic insights for isatuximab and provide support for a range of combination therapy approaches that could be tested for isatuximab in the future.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cytotoxicity, Immunologic/drug effects , Cytotoxicity, Immunologic/immunology , Multiple Myeloma/immunology , Apoptosis/drug effects , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects
7.
Bioorg Med Chem Lett ; 29(3): 491-495, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30553737
9.
Blood ; 124(11): 1777-89, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25006129

ABSTRACT

Postchemotherapy relapse presents a major unmet medical need in acute myeloid leukemia (AML), where treatment options are limited. CD25 is a leukemic stem cell marker and a conspicuous prognostic marker for overall/relapse-free survival in AML. Rare occurrence of genetic alterations among PIM family members imposes a substantial hurdle in formulating a compelling patient stratification strategy for the clinical development of selective PIM inhibitors in cancer. Here we show that CD25, a bona fide STAT5 regulated gene, is a mechanistically relevant predictive biomarker for sensitivity to PIM kinase inhibitors. Alone or in combination with tyrosine kinase inhibitors, PIM inhibitors can suppress STAT5 activation and significantly shorten the half-life of MYC to achieve substantial growth inhibition of high CD25-expressing AML cells. Our results highlight the importance of STAT5 and MYC in rendering cancer cells sensitive to PIM inhibitors. Because the presence of a CD25-positive subpopulation in leukemic blasts correlates with poor overall or relapse-free survival, our data suggest that a combination of PIM inhibitors with chemotherapy and tyrosine kinase inhibitors could improve long-term therapeutic outcomes in CD25-positive AML.


Subject(s)
Antineoplastic Agents/pharmacology , Blast Crisis , Gene Expression Regulation, Leukemic/drug effects , Interleukin-2 Receptor alpha Subunit/metabolism , Proteolysis/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , STAT5 Transcription Factor/metabolism , Antineoplastic Agents/chemistry , Blast Crisis/drug therapy , Blast Crisis/genetics , Blast Crisis/metabolism , Blast Crisis/pathology , Female , HL-60 Cells , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , STAT5 Transcription Factor/genetics
10.
Oncotarget ; 5(10): 3362-74, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24830942

ABSTRACT

Inhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors. To identify potential combination partners for JAK2 compounds in MPN cell lines, we performed pooled shRNA screen targeting 5,000 genes in the presence or absence of JAK2 blockade. One of the top hits identified was MYC, an oncogenic transcription factor that is difficult to inhibit directly, but could be targeted by modulation of upstream regulatory elements such as kinases. We demonstrate herein that PIM kinase inhibitors efficiently suppress MYC protein levels in MPN cell lines. Importantly, overexpression of MYC restores the viability of PIM inhibitor-treated cells, revealing causal relationship between MYC down-regulation and cell growth inhibition by PIM compounds. Combination of various PIM inhibitors with a JAK2 inhibitor results in significant synergistic growth inhibition of multiple MPN cancer cell lines and induction of apoptosis. Mechanistic studies revealed strong downregulation of phosphorylated forms of S6 and 4EBP1 by JAK2/PIM inhibitor combination treatment. Finally, such combination was effective in eradicating in vitro JAK2 inhibitor-resistant MPN clones, where MYC is consistently up-regulated. These findings demonstrate that simultaneous suppression of JAK2 and PIM kinase activity by small molecule inhibitors is more effective than either agent alone in suppressing MPN cell growth. Our data suggest that JAK2 and PIM combination might warrant further investigation for the treatment of JAK2-driven hematologic malignancies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/drug effects , Janus Kinase 2/antagonists & inhibitors , Myeloproliferative Disorders/enzymology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Immunoblotting , Protein Kinase Inhibitors/pharmacology
11.
J Biol Chem ; 288(42): 30125-30138, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24003220

ABSTRACT

PRP4 kinase is known for its roles in regulating pre-mRNA splicing and beyond. Therefore, a wider spectrum of PRP4 kinase substrates could be expected. The role of PRP4 kinase in cancer is also yet to be fully elucidated. Attaining specific and potent PRP4 inhibitors would greatly facilitate the study of PRP4 biological function and its validation as a credible cancer target. In this report, we verified the requirement of enzymatic activity of PRP4 in regulating cancer cell growth and identified an array of potential novel substrates through orthogonal proteomics approaches. The ensuing effort in structural biology unveiled for the first time unique features of PRP4 kinase domain and its potential mode of interaction with a low molecular weight inhibitor. These results provide new and important information for further exploration of PRP4 kinase function in cancer.


Subject(s)
Neoplasm Proteins , Neoplasms , Protein Kinase Inhibitors , Ribonucleoprotein, U4-U6 Small Nuclear , Cell Line, Tumor , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Ribonucleoprotein, U4-U6 Small Nuclear/antagonists & inhibitors , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
13.
14.
ACS Med Chem Lett ; 2(12): 913-8, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900280

ABSTRACT

We report the discovery of a new (S)-3-aminopyrrolidine series of CCR2 antagonists. Structure-activity relationship studies on this new series led to the identification of 17 (INCB8761/PF-4136309) that exhibited potent CCR2 antagonistic activity, high selectivity, weak hERG activity, and an excellent in vitro and in vivo ADMET profile. INCB8761/PF-4136309 has entered human clinical trials.

15.
ACS Med Chem Lett ; 2(6): 450-4, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-24900329

ABSTRACT

We report the identification of 13 (INCB3284) as a potent human CCR2 (hCCR2) antagonist. INCB3284 exhibited an IC50 of 3.7 nM in antagonism of monocyte chemoattractant protein-1 binding to hCCR2, an IC50 of 4.7 nM in antagonism of chemotaxis activity, an IC50 of 84 µM in inhibition of the hERG potassium current, a free fraction of 58% in protein binding, high selectivity over other chemokine receptors and G-protein-coupled receptors, and acceptable oral bioavailability in rodents and primates. In human clinical trials, INCB3284 exhibited a pharmacokinetic profile suitable for once-a-day dosing (T 1/2 = 15 h).

16.
Bioorg Med Chem Lett ; 20(24): 7473-8, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21036044

ABSTRACT

Rational design based on a pharmacophore of CCR2 antagonists reported in the literature identified lead compound 9a with potent inhibitory activity against human CCR2 (hCCR2) but moderate activity against murine CCR2 (mCCR2). Modification on 9a led to the discovery of a potent CCR2 antagonist 21 (INCB3344) with IC(50) values of 5.1 nM (hCCR2) and 9.5 nM (mCCR2) in binding antagonism and 3.8 nM (hCCR2) and 7.8 nM (mCCR2) in antagonism of chemotaxis activity. INCB3344 exhibited >100-fold selectivity over other homologous chemokine receptors, a free fraction of 24% in human serum and 15% in mouse serum, and an oral bioavailability of 47% in mice, suitable as a tool compound for target validation in rodent models.


Subject(s)
Pyrrolidines/chemistry , Receptors, CCR2/antagonists & inhibitors , Administration, Oral , Animals , Drug Evaluation, Preclinical , Humans , Mice , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacokinetics , Rats , Receptors, CCR2/metabolism , Structure-Activity Relationship
17.
Sci Transl Med ; 2(51): 51ra70, 2010 Sep 29.
Article in English | MEDLINE | ID: mdl-20881279

ABSTRACT

The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma.


Subject(s)
Aminopyridines/pharmacology , Drug Resistance, Neoplasm/drug effects , Medulloblastoma/enzymology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Aminopyridines/therapeutic use , Animals , Cell Proliferation/drug effects , Gene Amplification/drug effects , Hedgehog Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Kruppel-Like Transcription Factors/metabolism , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Morpholines/therapeutic use , Mutation/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , Receptors, G-Protein-Coupled/metabolism , Smoothened Receptor , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects , Zinc Finger Protein Gli2
18.
ACS Med Chem Lett ; 1(9): 483-7, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-24900235

ABSTRACT

To identify a CCR5 antagonist as an HIV-1 entry inhibitor, we designed a novel series of indane derivatives based on conformational considerations. Modification on the indane ring led to the discovery of compound 22a (INCB9471) that exhibited high affinity for CCR5, potent anti-HIV-1 activity, high receptor selectivity, excellent oral bioavailability, and a tolerated safety profile. INCB9471 has entered human clinical trials.

19.
Biochem Biophys Res Commun ; 387(2): 251-5, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19576173

ABSTRACT

The chemokine receptor 2 (CCR2) directs migration of monocytes and has been proposed to be a drug target for chronic inflammatory diseases. INCB3344 was first published as a small molecule nanomolar inhibitor of rodent CCR2. Here, we show that INCB3344 can also bind human CCR2 (hCCR2) with high affinity, having a dissociation constant (K(d)) of approximately 5nM. The binding of the compound to the receptor is rapid and reversible. INCB3344 potently inhibits hCCR2 binding of monocyte chemoattractant protein-1 (MCP-1) and MCP-1-induced signaling and function in hCCR2-expressing cells, including ERK phosphorylation and chemotaxis, and is competitive against MCP-1 in vitro. INCB3344 also blocks MCP-1 binding to monocytes in human whole blood, with potency consistent with in vitro studies. The whole blood binding assay described here can be used for monitoring pharmacodynamic activity of CCR2 antagonists in both preclinical models and in the clinic.


Subject(s)
Pyrrolidines/pharmacology , Receptors, CCR2/antagonists & inhibitors , Biological Assay , Cells, Cultured , Chemokine CCL2/metabolism , Chemotaxis , Extracellular Signal-Regulated MAP Kinases/metabolism , Flow Cytometry/methods , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Phosphorylation , Pyrrolidines/metabolism
20.
Biochem Biophys Res Commun ; 352(3): 609-16, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17141195

ABSTRACT

Interleukin-1 stimulation leads to the recruitment of MyD88, interleukin-1 receptor-associated kinase 1 (IRAK-1) and interleukin-1 receptor-associated kinase 4 (IRAK-4) to the IL-1 receptor. The formation of the IL-1 receptor complex triggers a series of IRAK-1 autophosphorylations, which result in activation. IRAK-4 is upstream of IRAK-1 and may act as IRAK-1 kinase to transmit the signal. To date, there is no upstream kinase reported for IRAK-4; the activation mechanism of IRAK-4 remains poorly understood. Here, for the first time, we report three autophosphorylation sites that are responsible for IRAK-4 kinase activity. LC-MS/MS analysis has identified phosphorylations at T342, T345, and S346, which reside within the activation loop. Site-directed mutants at these positions exhibit significant reductions in the catalytic activity of IRAK-4 (T342A: 57%; T345A: 66%; S346A: 50%). The absence of phosphorylation in kinase-dead IRAK-4 indicates that phosphorylations in the activation loop result from autophosphorylation rather than from phosphorylation by an upstream kinase. Finally, we demonstrate that autophosphorylation is an intramolecular event as wild-type IRAK-4 failed to transphosphorylate kinase-inactive IRAK-4. The present data indicate that the kinase activity of IRAK-4 is dependent on the autophosphorylations at T342, T345, and S346 in the activation loop.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Kidney/enzymology , Signal Transduction/physiology , Amino Acid Sequence , Binding Sites , Cell Line , Enzyme Activation , Feedback/physiology , Humans , Molecular Sequence Data , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...